Using arguments from the command line

Many Java applications take input from the user. Often, this input is provided interactively, while the
application is running—but sometimes, it’s sufficient to provide all of the necessary input when launching
the application; this second option can be implemented via command line arguments.

The Java application launcher command line

To review, the basic syntax when running a Java application via the Java application launcher is
java [options]| classname [args]

(Remember: The square brackets indicate that the contents are optional.)

Command-line arguments

The main method of a Java application class is always declared with a single parameter, an array of

String objects. If no command line arguments are specified to the Java application launcher, an array with
zero elements will be passed to main ; otherwise, the contents of the array will be populated automatically:
The first argument will be the first element of the array (at index position 0); the second argument will be

the second element of the array (at index position 1); and so on.
There are some important implications of this approach:

e Java arrays are homogeneous and strongly typed; thus, even if a command line argument is a number
(for example), it will be passed as a String in the array. If our application needs to treat such a value

as a number, it will have to perform any necessary conversion.

e Command line arguments are delimited by spaces. For example, in
java SomeClass A sentence made up of several words.

There are actually 7 command line arguments specified for the Java application; these will be passed
to the main method of SomeClass in an array with the contents {"A", "sentence", "made", "up",
"of", "several", "words."}.If the desired behavior is to treat the entire sentence (in this case) as a

single argument, it must be enclosed in quotes on the command line, e.g.
java SomeClass "A sentence made up of several words."

In this invocation, the command line arguments passed to the main method of SomeClass will

consist of an array with a single element: {"A sentence made up of several words."}.



Note: The length field of any array can be used to find out how many elements are in that array. So (for
example), if the String[] parameter in the declaration of main is called args, then args.length isthe
number of elements in the args array. Thus, if no arguments are passed on the command line,
args.length will have a value of zero (and any attempts to read or write a value to args[0], args[1],
etc. will result in an error). If we're expecting arguments for a given application to be passed on the
command line, and we're not using a library to handle and parse them (e.g. Apache Commons CLI), it’s

essential that we check the length of the array passed to main before we try to read any of the values in

that array.

Iterating over command line arguments

In general terms, iteration is the repetition of one or more tasks for every item in a collection. Though we
haven't paid much attention to it, the array of strings passed to the main method is (again in general terms)
such a collection. So, though we'll look at arrays and iteration in much more detail in the near future, we're

going to get a small taste of them now, by looking deeper at the command line arguments.

The first thing to remember is that the single parameter to the main method is an array of String objects.
So while command line arguments may be numeric in nature, they will nonetheless be passed as strings to
main . Related to that is the fact that arrays in Java (as in many other languages) are homogeneous - that is,
they can only contain elements of the same type. So, for example, we can have a String[] (an array of
String objects), or an int[] (an array of int values), but not an array that contains both String and
int . (There are other kinds of collections that aren’t as restrictive; however, as a rule, we should be wary

of mixing very different types in a collection.)
There are 2 basic ways to iterate over an array in Java:

e Use a traditional for loop, where we use a counter that (generally) starts at O and ascends to
array .length - 1 (theindex of the last element in the array) in increments of 1. For each value of

the counter, we retrieve and process the item at the corresponding index position in the array.

In Java, this method uses the for statement, which has the syntax

for (initialize; condition; update)
statement;

or

for (initialization; condition; update) {
statement;

For most purposes, the 2"d form (which allows multiple statements to be executed iteratively) is
preferable. It is far less prone than the 1%t to inadvertent errors that can be introduced when

modifying existing code.


http://commons.apache.org/proper/commons-cli/

In the above initialize, condition,and update are placeholders: We will replace them with the

appropriate variable declaration, assignment, test, and update statements for our purposes.

o

o

initialize is used to initialize the value of the counter variable; we usually declare the counter
variable itself as well (i.e. we declare and use a new variable for the counter, rather than re-using

an already declared variable).

condition is a a Boolean-valued expression (i.e. one that can be evaluated as true or false)
that is tested prior to each iteration. If it evaluates to true, iteration proceeds; otherwise,
iteration halts (or never even starts), and execution jumps to the next statement after the for
statement. Typically, this condition tests the counter variable to ensure that it is still within the

limits of the array.

update is a statement used to update the counter variable - usually incrementing it by 1.

To iterate over a String[] variables named args (such as the array of command line parameters

passed to the main method), we could do the following:

for

(int 1 = @; 1 < args.length; i++) {

System.out.printf("Arg # %d is %s%n", i, args[i]); // Or whatever.

e Use an enhanced for loop, also called a for-each loop, where we iterate over the array without using a

counter. This feature has been available in Java since Java 5, and has a simple, elegant syntax. In

general, this is the preferred method, unless we need to update the array contents or use the counter for

something other than accessing the array elements.

The syntax of the for-each loop is similar to that of the regular for loop, but no counter variable is

involved. Instead, we simply specify the collection to iterate over, and a variable to hold each value in

turn:

for

(variable-declaration : collection)

statement;

or

for (variable-declaration : collection) {

statement;

Again, we have some placeholders in this syntax:

o

variable-declaration is exactly what it says: We declare a local variable that will hold each
value of the collection in turn, as we iterate over the collection. So, for example, if we're
iterating over a String[], we would declare a String variable here. Note the difference
between this variable and the one used for the previous version of the for statement: in the



previous, the variable used is an int -type counter, and values are retrieved from the array by
using the counter as an index into the array; in this form, the variable is the same types as the
array elements, and each element is automatically assigned to this variable as iteration proceeds.

o collection is the array (or other type of collection) over which we're iterating.

For example, we could iterate over the String[] argument passed to the main method this way:

for (String arg : args) {
System.out.printf("Argument: %s%n", arg); // Or whatever.

Note that we don’t have a counter variable to include in our processing in this type of iteration; we
only have a copy of each array element in turn. A non-obvious (and non-trivial) implication of this is
that—depending on the array’s element type—we may not be able to modify the array contents as we
iterate over it. For example, if the array elements are of an intrinsic type (e.g. int, float, char),
each value will be copied in turn into the local variable; if we change the value of the local variable, it
has no effect on the source of that value (the array elements). If the array elements are object
references, then the copy in the local variable is also a reference to an object, and we may be able to

change object’s state—unless the references are to immutable objects, such as String.

References

H. Schildt, “More Data Types and Operators,” Java: A Beginner's Guide (8th ed.), ch. 5, pp. 135-184.

Apache Commons™ CLI™

Java SE APl Documentation: String.format(String format, Object.. args)

Java Language Specification: Conditional Operator



http://commons.apache.org/proper/commons-cli/
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#format-java.lang.String-java.lang.Object...-
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.25

	Using arguments from the command line
	The Java application launcher command line
	Command-line arguments
	Iterating over command line arguments
	References


