
Shuffling in Java, Part 1:
Lotteries, Random Numbers, and Pseudo-random Numbers

Nicholas Bennett
nick@nickbenn.com

January 2019

mailto:nick@nickbenn.com
mailto:nick@nickbenn.com
mailto:nick@nickbenn.com

Copyright and License

This document is copyright © 2019, Nicholas Bennett. This document (with the explicit
exception of the included and accompanying Java source code) is licensed under a
Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License.
Permission is granted to copy, distribute, and display this document—and derivative
works based on this document—for non-commercial purposes, provided that this
license notice is preserved, and provided that any derivative work is licensed under
identical conditions.

Source Code

All Java source code fragments and files included in and accompanying this document
are licensed as follows:

The MIT License (MIT)

Copyright © 2019 Nicholas Bennett

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Last modified: 30 January 2019.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:nick@nickbenn.com
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Preface

Objective

This document is intended primarily as curricular material in the Deep Dive Coding
Java + Android Bootcamp [1]. While this document and the accompanying presentation
aim to introduce some important programming and algorithmic concepts through their
application to some well-known problems, they're only an introduction: this is neither a
broad programming tutorial nor an in-depth lesson on algorithms.

Audience

This lesson should not be a student's first hands-on experience with programming,
algorithms, or pseudocode. Minimally, students should be comfortable writing
assignment, conditional, and iteration statements, as well as simple classes and methods
in Java. Previous completion of first-year algebra is assumed, and previous completion
of—or current enrollment in—second-year algebra (including elementary analytic
geometry) is highly recommended.

Implementation Language

The concepts addressed in this document aren't tied to any single programming
language, or family of languages. However, the implementations shown are written in
Java [2].

The Java code included in and accompanying this document was tested successfully
with several JDK versions from 1.8 update 191 to 11.0.2. However, the code doesn’t
depend on any language features added to the language after version 1.6; thus, it
should compile and run with all JDK 1.6, 1.7, 1.8, 9, 10, and 11 releases.

Algorithms in Java: Shuffling and Random Numbers 3

This page intentionally left blank.

4 Algorithms in Java: Shuffling and Random Numbers

Shuffling: The flip side of sorting

Introduction

The shuffling problem is easily stated: How can we rearrange a list of items so that the
order is random and fair?

Fortunately, this isn't a hard problem to solve—but it's also easy to get it wrong [3],[4].
There are 2 widely used, effective approaches to shuffling in computer programs:
sorting on a random number, and the Fisher-Yates shuffle.[5],[6]

Shuffling algorithms

Sorting on a random number

1. Assign a randomly generated value to each item to be shuffled.

2. Sort the items, in order of the assigned random numbers.

3. Stop. The list is now shuffled.

Though the need for sorting makes this method less efficient than the one that follows,
it's very easy to implement in some languages and environments—for example, this can
be a good approach for retrieving and presenting database records in a random order.

Durstenfeld's version of the Fisher-Yates shuffle (aka Knuth shuffle)

1. Begin with the sequence of items X , containing the N items x0 , x1 ,… , xN−1.

2. For each integer value i, starting at N−1 and counting down to 1, do the
following:

a. Generate a random value j, which can be any one of {0 , 1 ,… , i}; each of the
values must be equally likely to be selected.

b. Exchange the positions of x i and x j in the sequence. Note that it's possible that
i = j; obviously, no exchange is needed when that's the case.

3. Stop. The items in the sequence are now shuffled.

As we repeat steps 2a–b (i.e. iterate) with values of i from N−1 to 1, each randomly
selected item is shuffled by exchanging it with the (initially) unshuffled item at index
position i. In effect, the list is divided into two parts, one unshuffled and one shuffled,
with the latter growing as the former shrinks, until no unshuffled items remain.

Algorithms in Java: Shuffling and Random Numbers 5

Exercise 1: Shuffling a list of 6 items by rolls of a die

Using a six-sided die to generate random numbers, let's shuffle the words “apple”,
“banana”, “chile”, “donut”, “egg”, and “flan” into a random order. To help us keep
track of the items as we shuffle them, we'll use tables 1-3. Also, since dice are usually
numbered starting at 1, we’ll count down from 6 to 2 (instead of 5 to 1) in this case.

Items (N = Number of Items = 6)

Position

Iteration i Roll (j) 1 2 3 4 5 6

Initial apple banana chile donut egg flan

1 6

2 5

3 4

4 3

5 2

Table 1: Example of Fisher-Yates shuffle, initial state

We start at row 1—i.e. the row where 1 appears in the Iteration column—and roll the
die to get a value of j. For example, assume we roll a 4. We write this value in the Roll
(j) column. Next, we copy the six words in our list from the previous row to the current
row. As we do so, we exchange the item in column 4 (since that was our roll) with the
item in column i, (column 6, in this case); thus we exchange “donut” with “flan”;
“donut” is now in its shuffled position. The result appears in table 2.

Items (N = Number of Items = 6)

Position

Iteration i Roll (j) 1 2 3 4 5 6

Initial apple banana chile donut egg flan

1 6 4 apple banana chile flan egg donut

2 5

3 4

4 3

5 2

Table 2: Example of Fisher-Yates shuffle, after 1 iteration

6 Algorithms in Java: Shuffling and Random Numbers

In each successive iteration (a repeated set of steps in an algorithm), we move down one
row (decreasing the value of i by 1) and roll the die. If the roll is greater than the value
in the i column, we keep rolling until we get a value less than or equal to i; then, we
write our roll in the Roll (j) column. Finally, we copy the items from the previous row
to the current row, exchanging the items in columns i and j.

Assume that in iteration 2, we roll a 6. However, because 6 is greater than the current
value of i, we roll again; this time, we get a 3, so we write that value in the Roll (j)
column. Then, we copy our six items from the previous row to the current row,
exchanging the item in column j (or 3), which is “chile”, with the item in column i (or
5), which is “egg”. Our randomly selected item, “chile”, is now shuffled.

Items (N = Number of Items = 6)

Position

Iteration i Roll (j) 1 2 3 4 5 6

Initial apple banana chile donut egg flan

1 6 4 apple banana chile flan egg donut

2 5 3 apple banana egg flan chile donut

3 4

4 3

5 2

Table 3: Example of Fisher-Yates shuffle, after 2 iterations

Complete this shuffle on your own, by performing iterations 3-5.

Exercise 2: Additional questions and tasks

I. What is a fair shuffle? Does random always imply fair?

II. If each iteration of steps 2a–b of the Fisher-Yates algorithm shuffles one item in
the list, how is it that we're able to shuffle 6 items in 5 iterations? More generally,
how are we able to shuffle all N items in N−1 iterations?

III. In any given iteration of steps 2a–b of the Fisher-Yates shuffle, it's possible that
item i will trade places with itself. Would eliminating this possibility, by limiting
our random selection to the range from 0 to i−1, still give us a complete, fair
shuffle?

IV. Is there any value in performing a Fisher-Yates shuffle multiple times in a row,
similar to the way we would manually shuffle a deck of cards several times?

Algorithms in Java: Shuffling and Random Numbers 7

This page intentionally left blank.

8 Algorithms in Java: Shuffling and Random Numbers

Lotteries

Introduction

Lotteries have existed—legally and illegally, and with many variations—for over 2000
years. In the U.S.A., lotteries were illegal for most of the 20th century, but by the 1960s,
some states were modifying their constitutions to allow state lotteries. 43 states now run
(or participate in) lotteries, using them as a source of state revenues. All of these
lotteries set the payoffs so that the total amount paid to the winners is always much less
than the total amount paid in, giving the state an unbeatable advantage.

In most of the state lotteries, the drawing of numbers is done with actual balls in a
container. However, some lotteries are conducted electronically; also, state lotteries
usually offer some form of “quick pick” option, letting players buy lottery tickets with
the numbers selected at random by computer. So we'll write a Java program that
generates our own lottery draws or quick picks.

The next three exercises don’t assume anything about your development environment;
they can be completed with virtually any Java IDE, or just by using a text editor and the
command-line tools for compiling and running Java programs.

Exercise 3: Writing a lottery class in Java

One of the first things we need to do, when writing any Java program, is decide what
classes we need. In Java, classes are units of Java code, which generally perform one or
more of three primary roles:

• A set of related methods (named procedures that perform specific tasks) that
operate on variables of the basic Java data types, or object types defined by other
classes.

• A set of methods to manage the execution (and termination) of Java programs,
applets, etc.

• An encapsulation of the attributes and behaviors of a type of object, often
corresponding to a physical or logical object related to the problem we're
working on. For example, a traffic simulation program might have Vehicle and
TrafficSignal classes that define variables and methods for managing the
speed, location, and direction of vehicles, and the states of traffic signals.

Algorithms in Java: Shuffling and Random Numbers 9

In this case, we need a class that encapsulates the data for a lottery—i.e. the set of
numbers that can be selected—with one very important behavior:

• Select a subset of the numbers at random, without replacement—i.e. without
putting each number back after it's selected. In most lotteries, the order in which
the numbers are selected is irrelevant—in fact, they're generally sorted in
ascending order before they're announced. So our class will do the same.

We'll begin by creating a Lottery class, with an array of integers to hold the lottery
numbers, and a constructor that will create and fill the array.

Create a new class file, named Lottery.java, in the edu/cnm/deepdive source
directory (i.e. the edu.cnm.deepdive package), and write the following code (the line
numbers are for reference only; don't write them in your code):

1
2
3
4
5
6
7
8
9
10
11
12
13
14

package edu.cnm.deepdive;

public class Lottery {

 private int[] numbers;

 public Lottery(int maximum) {
 numbers = new int[maximum];
 for (int i = 0; i < numbers.length; i++) {
 numbers[i] = i + 1;
 }
 }

}

Let's review the most important elements of the code:

• Our class is in the edu.cnm.deepdive package (line 1), is named Lottery,
and has public visibility (line 3).

• Our class includes the private field numbers (line 5), which is a reference to an
int[], or an array of integers.

• A public constructor begins on line 7. A constructor is a class member whose job
is to initialize the data used by an instance of the class. A constructor always has
the same name as the class, and no return type is specified.

10 Algorithms in Java: Shuffling and Random Numbers

◦ Inside the parentheses that follow the name of our constructor, we see that
when this constructor is called, some additional information must be
provided: an int, which the constructor refers to as maximum. Later, when
we're using our Lottery class type, we'll need to provide this value as an
argument (information passed inside parentheses when invoking a method or
constructor) when we call the constructor.

◦ Inside the curly braces of the constructor (lines 7 and 12), we have the body of
the constructor—i.e. the code that initializes our lottery numbers and our
random number generator. In this body, our code does the following:

▪ First we use the new keyword to allocate space for the numbers array,
with enough elements for the range of numbers from 1 to maximum (line
11).

▪ Next, we need to put our lottery numbers into the array. We use the for
statement (starting in line 12) to iterate over the elements in the array,
using the int variable i as an iteration counter, with a starting value of 0,
and continuing as long as i is less than maximum, After each iteration, we
increment the value of i (using i++). In each iteration, we execute the
code between the curly braces on lines 12 and 14; in that code, we place
into element i of the array a value equal to one more than i; for example,
we put the number 1 into element 0, 2 into element 1, etc.—all the way up
to the value of maximum, which we put into element maximum – 1.

Before we go any further, make sure you've saved your work. Since the class is named
Lottery, the file name must be Lottery.java.—i.e. with the exact same spelling and
capitalization as the class name, and with the .java extension.

Next, compile the code you've written—making sure to fix any errors that are reported
along the way, until your code compiles without error.

So far, we've taken care of the first part of the required functionality. Now, we'll write
code to select a subset of the numbers at random. We'll use shuffling to mix up the
numbers, but we're going to change the algorithm just a bit. Remember that in order to
shuffle N items, we perform N−1 iterations of selecting an unshuffled item at random
and swapping it with the last unshuffled item. But in this case, we don't really need to
shuffle all of the numbers; we only need to shuffle enough for our subset.

In writing the code that follows, the code you already wrote is grayed-out. Don't re-
write the grayed-out code; simply add the new code to it.

Algorithms in Java: Shuffling and Random Numbers 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

package edu.cnm.deepdive;

import java.util.Arrays;
import java.util.Random;

public class Lottery {

 private int[] numbers;

 public Lottery(int maximum) {
 numbers = new int[maximum];
 for (int i = 0; i < numbers.length; i++) {
 numbers[i] = i + 1;
 }
 }

 private void mix(int iterations, Random rng) {
 for (int i = 0; i < iterations; i++) {
 int destination = numbers.length - i - 1;
 int source = rng.nextInt(destination + 1);
 int temp = numbers[source];
 numbers[source] = numbers[destination];
 numbers[destination] = temp;
 }
 }

 public int[] pick(int count, Random rng) {
 int[] selection;
 mix(count, rng);
 selection = Arrays.copyOfRange(
 numbers, numbers.length - count, numbers.length);
 Arrays.sort(selection);
 return selection;
 }

}

Let's review the additions, starting at the top:

• We added import statements (lines 3–4) that tell the Java compiler that our code
will use the Arrays and Random classes from the java.util package.

• Lines 17–25 contain the declaration and body of the private (not visible outside
the class) method mix.

12 Algorithms in Java: Shuffling and Random Numbers

◦ When this method is called, it expects to receive an int (referred to by the
method as iterations) and an instance of Random (referred to as rng).
iterations is the number of iterations of steps 2a–b in the Fisher-Yates
shuffle that this method will execute; since each iteration shuffles one element
in the numbers array, this is also the number of lottery numbers shuffled by
this method. rng is the source of randomness (pseudo-randomness, actually)
used for shuffling.

◦ We use the for statement (starting in line 18), with the counter variable i, to
repeat the code between the curly braces on lines 18 and 24 a total of
iterations times.

◦ In lines 19–20, local variables (variables existing only within the current block
of statements) named destination and source are declared: the first is
used to refer to the ith-to-last element of the array; the second is given a
random value value (generated by rng) between 0 (inclusive) and
destination + 1 (exclusive).

◦ Now, we use another local variable, temp, to help us exchange the values in 2
elements of the numbers array: First, the value of the lottery number in the
source element of numbers is assigned to temp. Then, we take the lottery
number in the destination element of numbers and put it in the source
element. Finally, we take the lottery number we stored in temp, and put it
into the destination element of the numbers array. This has the effect of
swapping a randomly selected unshuffled item with the last unshuffled item
in the numbers array; this randomly selected item is now in its shuffled
position.

• We've declared the public method pick (lines 27–34), which returns an
int[], or array of integers.

◦ When this method is called, 2 additional pieces of data must be provided: an
int, which this method refers to as count, and an instance of Random
(referred to as rng), used as a source of randomness.

◦ In the body of the pick method, we declare a local variable named
selection (line 28). Like the numbers variable, selection refers to an
array of integers.

Algorithms in Java: Shuffling and Random Numbers 13

◦ Next, we call the mix method, passing count and rng as arguments (line 29).
The mix method shuffles count lottery numbers to the end of the numbers
array, using rng as the source of randomness.

◦ After mix does the shuffling, we copy the shuffled numbers from the
numbers array to the selection array, using the copyOfRange method in
the Arrays class (lines 30–31). In this call, we specify the array we're copying
data from (numbers), and the range of elements to copy.

◦ We use another method of the Arrays class, sort, to sort the elements of the
selection array in ascending order (line 32).

◦ Finally, we return the selection array as the result of this method (line 33).

Save and compile the Lottery class. If any error messages appear, fix the reported
problems, then save and compile again, until you can compile without any errors.

Exercise 4: Testing the Lottery class interactively

Our Lottery class is complete for our purposes today, but it isn't a Java program; it
doesn’t have the required main method. Fortunately, tools such as JShell, Eclipse
scrapbook pages, IntelliJ IDEA scratch files, or the DrJava interactions pane can be used
to explore a class like this interactively, without having to create a running Java
program. Use of these tools is beyond the scope of this document. (In any event, the
reader should already be familiar with one or more of them.) In general terms, any of
the above tools will allow you to do the following:

• Create an instance of java.util.Random (or of a subclass of Random, such as
java.security.SecureRandom).

• Create an instance of Lottery, passing a maximum number for the lottery
selection and the Random instance as constructor arguments.

• Invoke the pick method of the Lottery instance, specifying the number of values
to be picked.

Exercise 5: Writing a Java program that uses the Lottery class

For this exercise, we'll write a program to generate several picks for the NM Lottery
Roadrunner Cash game, in which the player picks 5 separate numbers from 1 to 37 [7].

14 Algorithms in Java: Shuffling and Random Numbers

For a Java program, we start (again) with a class. Create a new class, Roadrunner, in
the same package as before (edu.cnm.deepdive), and type this code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

package edu.cnm.deepdive;

public class Roadrunner {

 private static final int MAXIMUM_NUMBER = 37;
 private static final int NUMBER_TO_PICK = 5;
 private static final int NUMBER_OF_TICKETS = 10;
 private static final String PICK_FORMAT =
 "Ticket #%d: %s%n";

 public static void main(String[] args) {

 }

}

Let's take a look at the code in more detail:

• As before, we declare our class with the class keyword, the name of the class,
and a set of curly braces (lines 3 and 16) to hold the implementation of the class.
We also set the visibility of the class to public (line 3), so that it can be seen
from other classes—and most importantly, by the Java launcher.

• Just inside the class (lines 5–9), we have 4 fields with an important combination
of keywords.

◦ A variable that's declared static final is actually a constant: once we
assign an initial value to a constant, the Java compiler won't let a different
value be assigned. We've assigned initial values to all of these constants, so
we can be certain that those values won't change.

◦ In these constants, we've stored the upper limit of the range of numbers for
this lottery (line 5), how many numbers must be selected in each pick (line 6),
and how many separate sets of numbers we'll pick (line 7), and the format
string that we’ll use when printing out each pick (lines 8–9).

• Starting in line 11, we see the application entry point. The most important thing to
remember about this is that when the Java launcher tries to run a class as a Java
application, it looks in that class for a public static method called main,
which doesn't return any data when it's done (that what void return type

Algorithms in Java: Shuffling and Random Numbers 15

means). Finally, inside the parentheses of the main method declaration (line 11),
we see that the method expects to receive an array of String objects; this is also
a requirement for the main method of a Java program. (The arguments are
values that can be specified on the command line when a Java program is
launched—but in this case, we’re not going to use any such additional
information passed in this way.)

If the Java launcher finds a method with the public static void
main(String[]) signature, it calls it; if it doesn't find it, it reports an error and
terminates execution.

• As with our earlier methods, we see that the main method has a set of curly
braces (lines 11 and 13); we'll write the body of the method—i.e. the top-level
steps of our Roadrunner program—between these braces.

Save the file. Be sure to save it as Roadrunner.java, in the same directory
(corresponding to the edu.cnm.deepdive package) as your Lottery.java file.
(Remember that the file name must match the class name in spelling and capitalization,
with the addition of the .java file extension.)

Compile the file. If you get error messages, read them carefully to try to figure out
what's wrong, and try to fix the problems. Save and compile the file again after making
any such changes.

Some of the last few lines of code we’ll add should look familiar to you, if you already
exercised the Lottery class interactively. Remember to type only the new code (shown
in bold blue type), and not the code we wrote before (shown in gray).

16 Algorithms in Java: Shuffling and Random Numbers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

package edu.cnm.deepdive;

import java.util.Arrays;
import java.util.Random;
import java.security.SecureRandom;

public class Roadrunner {

 private static final int MAXIMUM_NUMBER = 37;
 private static final int NUMBER_TO_PICK = 5;
 private static final int NUMBER_OF_TICKETS = 10;
 private static final String PICK_FORMAT =
 "Ticket #%d: %s%n";

 public static void main(String[] args) {
 Lottery lotto = new Lottery(MAXIMUM_NUMBER);
 Random rng = new SecureRandom();
 for (int i = 0; i < NUMBER_OF_TICKETS; i++) {
 int[] pick = lotto.pick(NUMBER_TO_PICK, rng);
 String prettyPick = Arrays.toString(pick);
 System.out.printf(PICK_FORMAT, i + 1, prettyPick);
 }
 }

}

There are a few things to notice this time:

• This time, we’re importing the java.util.Arrays, java.util.Random, and
java.security.SecureRandom classes (lines 3–5). As you probably recall,
the first is a class that includes some useful methods for working with arrays,
and the second is a class that implements a pseudo-random number generator
(PRNG). The third class imported (SecureRandom) is actually a subclass of the
second (Random), and implements a much higher-quality PRNG.

• We're using the for statement to iterate (starting in line 18, with curly braces in
lines 18 and 22). This time, we're using it to count up to the desired number of
“tickets”—i.e. the separate lottery picks the program will draw for us.

• For each ticket, numbers are drawn using the pick method (line 19), and the
result is assigned to the local variable pick.

Algorithms in Java: Shuffling and Random Numbers 17

• In line 20, we use the Arrays.toString method to convert the int[] with the
selected subset of numbers to a String; we then assign this to the prettyPick
local variable.

• We use System.out.printf (line 21), to print the number of the current ticket,
along with the numbers picked, in a formatted string. With this method, we first
specify a format string (in this case, the format string is the PICK_FORMAT
constant), which may contain static text along with one or more placeholders
(you can spot these placeholders easily: they start with the percent sign); then,
we pass the data to be displayed, as additional parameters in the method call.
Before the text is written out, the placeholders in the format string are replaced
by the data values.

In this case, the format string is: “Ticket #%d: %s%n”. The placeholders are
%d (for an integer value displayed as a decimal number), %s (for a string value),
and %n (for a platform-specific new line). The first placeholder is replaced by the
value of i + 1, and the second placeholder is replaced by the value of
prettyPick.

Save, compile, and run your program. Is the result what you expected to see?

Exercise 6: Additional questions and tasks

I. In all, how many different Roadrunner picks are possible? In other words, how
many combinations (distinct subsets, without regard to the order of items in a
subset) of 5 numbers from the set {1, 2, …, 37} are possible?

II. Can you think of a way to modify your Roadrunner class, so that you could use
it to check whether the method we're using generates all possible combinations,
in approximately equal proportions?

III. Create a new Keno class with a main method, that can be executed as a Java
program, so that 20 numbers in the range from 1 to 80 are drawn (using the
Lottery class), for an automated keno game.

IV. Create a new Java class with a main method that generates quick pick numbers
for PowerBall, where 5 numbers from 1 to 59 are selected without replacement,
and then a 6th number from 1 to 39 is selected.

18 Algorithms in Java: Shuffling and Random Numbers

Random and Pseudo-random Numbers

The need for randomness

In previous exercises, we used 2 of Java's random number generator classes (Random
and SecureRandom) to generate random values that we used to shuffle lottery
numbers. Many different kinds of computer programs benefit from random numbers;
when we're working on computational science projects, and building scientific
simulations, the need for random numbers becomes even more critical.

But there's a wrinkle: contrary to what many might think, very little that happens in
most computers—at least in an easily observed fashion—is truly random. Fortunately
for us, we often don't need true randomness: numbers that appear random, even
though they're not, are good enough in many cases. Numbers of this type are called
pseudo-random numbers.

The appearance of randomness

What can we observe in this portion of a sequence of numbers?

S = 0, 5, 6, 3, 12, 1, 2, 15, 8, 13, 14, 11, 4, 9, 10, 7, 

At first, we might see some apparently random numbers, all less than 16. We might
notice that none of the numbers is repeated—but we could chalk that up to having such
a short portion of the sequence (or, we might speculate that the numbers are being
selected by sampling without replacement). Looking closer, we might suspect some
patterns in the differences between successive numbers; maybe that's just a coincidence.
Finally, we might notice that the sequence alternates between odd and even values; that
seems very unlikely to be a coincidence.

Let's look at more of the sequence:

S = 0,5,6,3, 12,1,2,15,8,13, 14,11, 4,9,10, 7,0,5,6,3,12, 1,2,15,8,13,14, 11, 4,9,10,7,

Now we see a complete duplication: the sequence seems to restart with the 17th number
and repeat identically. Certainly, the sequence is looking less and less likely to be
random. But for some very simple purposes (certainly not involving scientific

Algorithms in Java: Shuffling and Random Numbers 19

simulations), it might appear sufficiently unpredictable (at least, to the casual observer,
who's probably less picky about these things than we are) to be of use.

In fact, this sequence is an example of a pseudo-random number sequence—a sequence of
numbers generated by mathematical formulæ (called a pseudo-random number generator,
or PRNG), where each number in the sequence is computed from one or more previous
numbers in the sequence, and where the overall result is intended to appear random.

The PRNG that generated the sequence is quite simple:

s0 = 0
si1 = 13 s i  5 mod 16

The sequence has a seed (initial value—note that we usually call the initial value in a
sequence s0, instead of s1) of 0, and each term in the sequence is generated by
multiplying the previous term by 13, then adding 5, and finally taking the remainder
after dividing by 16.

We can keep computing the terms of this sequence indefinitely, and the pattern keeps
repeating, as shown in Figure 1. The number of iterations required before the sequence
repeats is the period of a PRNG; here, the period is 16.

We can also use a different value for s0 (i.e. a different seed); we'll get the same
repeating sequence, but starting at a different point. For example, with s0 = 2, we have:

S = 2,15,8,13,14,11, 4,9,10,7,0,5,6,3,12,1,2,15,8,13,14,11,4,9,10,7,0,5,6,3,12,1,…

20 Algorithms in Java: Shuffling and Random Numbers

0 8 16 24 32 40 48
0

5

10

15

Figure 1: LCG with si+1 = (13si + 5) mod 16, s0 = 0

We might conclude that this isn't a good way to generate pseudo-random numbers, for
the simple reason that the results aren't unpredictable enough. But what if our sequence
formula used values other than 13, 5, and 16? It turns out that with careful selection of
these values, we can get much better results.

Linear congruential generators

The PRNG we just looked at is an example of a linear congruential generator, or LCG. An
LCG generates a sequence of pseudo-random numbers with the equation:

si+1 = (a si + c) mod m

LCGs are included in the standard libraries of many different programming languages.
In most cases, only a portion of each si is returned as the pseudo-random value. For
example, the standard Java library generates pseudo-random 32-bit integers as follows
(note that S is the sequence maintained internally; X is the sequence of values returned)
[8]:

si+1 = (25214903917 si + 11) mod 248

x i = ⌊ si216 ⌋
With the division by 216, the most
obviously non-random aspects of the
sequence (e.g. the alternating
odd/even pattern, characteristic of
LCGs with even moduli) are
minimized. However, there are other
issues with LCGs, primarily having
to do with the correlation between
successive LCG values. For example,
in Figure 2 we see what happens
when we group the terms of our
original sequence in pairs, and treat
them as a sequence of points in two dimensions:

S =0,5 , 6,3 , 12,1 , 2,15 , 8,13 , 14,11 , 4,9 , 10,7 , 

Algorithms in Java: Shuffling and Random Numbers 21

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Figure 2: Values from simple LCG plotted in 2 dimensions.

Not only are the points very regularly spaced, but when we view the graph as a torus
(an LCG “wraps around” at the modulus value—in this case, 16), we see that we can
draw a single line from (15, 0), through the point at (12, 1), and continuing (wrapping
around as appropriate) through all of the other points!

With a well chosen LCG, with a long period, this effect isn't nearly as visible (especially
with a small number of dimensions), but it's still present.

Exercise 7: Another LCG

Given the LCG:

s0 = day of the month you were born ∈ {1 , 2 ,… , 31}
si+1 = (5 si + 13) mod 32

Compute the terms s1 , , s2 ,… , s10.

Remember that amod b is the remainder when a is divided by b. For example:

11 mod 4 = 3

37 mod 5 = 2

89 mod 32 = 25

Based on your calculations, and on the parameters of this LCG:

• How random does the result appear?

• What patterns do you see?

• How many distinct values of si are possible?

• What is the period of the sequence S?

The Mersenne Twister and other PRNGs

The Mersenne Twister is a PRNG that uses a matrix linear recurrence to generate its
pseudo-random sequence [9]. It's named for the fact that key parameters of the
generating function form the exponent of a Mersenne prime (a prime number of the form
2 p−1).

22 Algorithms in Java: Shuffling and Random Numbers

Over the last decade, the Mersenne Twister has become a popular alternative to the
LCGs provided in many standard libraries. It's now included as the standard PRNG in
Python, Ruby, R, MATLAB, and Maple. Its key advantages are a very long period
(equal to the Mersenne prime 219937−1) and a lack of significant serial correlation.

There are many other PRNGs as well, each with its strengths and weaknesses. Statistical
tests can help us assess the quality of the generated sequences, as an aid in choosing
between alternative PRNGs; other factors might include ease of implementation and
runtime efficiency. But in the end, the selection of a PRNG has a lot to do with context:
What's the intended use? How much apparent randomness is required? What's the cost
(in time, long-term code maintenance, etc.) of using a PRNG different from the one
included with the standard library?

When pseudo-random isn't good enough

Sometimes, there's no acceptable substitute for truly random numbers—at least as seed
values for PRNGs. As noted above, most computers aren't very good at producing
genuine randomness, but there are any number of real-world processes that have truly
random behavior. Even better, some of these processes, while random, have well-
understood statistical behavior. If we can measure one or more of these processes over
time, that may give us a good source of useful random numbers.

In fact, processes such as the radioactive decay of certain elements, photon emissions by
semiconductors, atmospheric or thermal noise—even human users' mouse movements
and keyboard activity—serve these purposes very well. Capabilities for observing such
sources of randomness, in order to seed pseudo-random number generators with
randomly chosen values, are part of most current operating systems. In addition, there
are web services that provide truly random values over the Internet.

Algorithms in Java: Shuffling and Random Numbers 23

This page intentionally left blank.

24 Algorithms in Java: Shuffling and Random Numbers

Acknowledgments

Early development of this material was funded in part by the New Mexico
Supercomputing Challenge, and was written with the invaluable review and editing
assistance of Roger Critchlow and Janet Penevolpe.

References

[1] Deep Dive Coding Java + Android Bootcamp, 2018. [Online]. Available:
https://deepdivecoding.com/java-android/. [Accessed: Jan. 30, 2019].

[2] Oracle Technology Network for Java Developers, Jan. 17, 2019. [Online].
Available: https://www.oracle.com/technetwork/java/. [Accessed: Jan. 30, 2019].

[3] B. Arkin, et al, “How We Learned to Cheat at Online Poker: A Study in Software
Security,” Developer.com, Jun. 7, 2001. [Online]. Available:
https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-
at-Online-Poker-A-Study-in-Software-Security.htm [Accessed: Jan. 29, 2019].

[4] Rob Weir, “Doing the Microsoft Shuffle: Algorithm Fail in Browser Ballot,” Mar.
6, 2010. [Online]. Available: http://www.robweir.com/blog/2010/02/microsoft-
random-browser-ballot.html. [Accessed: Jan. 29, 2019].

[5] “Shuffling: Shuffling algorithms”, Wikipedia, Jan. 29, 2019. [Online]. Available:
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms. [Accessed: Jan. 29,
2019].

[6] "Fisher-Yates shuffle", Wikipedia, Jan. 5, 2019. [Online]. Available:
http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle. [Accessed: Jan. 29,
2019].

[7] "How to Play Roadrunner Cash", New Mexico Lottery, 2016. [Online]. Available:
http://www.nmlottery.com/how-to-play-roadrunner-cash.aspx. [Accessed: Jan.
29, 2019].

[8] “Random (Java SE 11 & JDK 11)”, Java® Platform, Standard Edition & Java
Development Kit, Version 11 API Specification, Sep. 7, 2018. [Online]. Available:
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/
Random.html. [Accessed: Jan. 29, 2019].

[9] "Mersenne twister", Wikipedia, Jan. 19, 2019. [Online]. Available:
http://en.wikipedia.org/wiki/Mersenne_twister. [Accessed: Jan. 29, 2019].

Algorithms in Java: Shuffling and Random Numbers 25

http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Mersenne_twister
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Random.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Random.html
http://www.nmlottery.com/how-to-play-roadrunner-cash.aspx
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://www.robweir.com/blog/2010/02/microsoft-random-browser-ballot.html
http://www.robweir.com/blog/2010/02/microsoft-random-browser-ballot.html
https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.oracle.com/technetwork/java/
https://deepdivecoding.com/java-android/

This page intentionally left blank.

26 Algorithms in Java: Shuffling and Random Numbers

Appendix A: Fisher-Yates Shuffle

Durstenfeld's version of Fisher-Yates shuffle (aka Knuth shuffle)

1. Begin with the sequence of items X , containing the N items x0 , x1 ,… , xN−1.

2. For each integer value i, starting at N−1 and counting down to 1, do the
following:

a. Generate a random value j, which can be any one of {0 , 1 ,… , i}; each of the
values must be equally likely to be selected.

b. Exchange the positions of x i and x j in the sequence. Note that it's possible that
i = j; obviously, no exchange is needed when that's the case.

3. Stop. The items in the sequence are now shuffled.

Algorithms in Java: Shuffling and Random Numbers 27

This page intentionally left blank.

28 Algorithms in Java: Shuffling and Random Numbers

Appendix B: Fisher-Yates Shuffle for Six Items and a Six-Sided Die

Algorithm

1. Write the names of the six items to be shuffled in columns 1 through the 6, under
Position, in the Initial row.

2. Start on row 1 (i.e. the row where the number 1 appears in the Iteration column).

3. Do the following for rows 1 through 5, in order:

a. Throw a single die to get a random value j, repeating as necessary to get a
value between 1 and i, (the value in the i column of the current row)
inclusive.

b. Write the j value (the value rolled on the die) in the Roll (j) column of the
current row.

c. Copy the items from the previous row to the current row, exchanging the
items in position i and position j.

4. Stop. Row 5 contains the fully shuffled items.

Working Table

Items (N = Number of Items = 6)

Position

Iteration i Roll (j) 1 2 3 4 5 6

Initial

1 6

2 5

3 4

4 3

5 2

Algorithms in Java: Shuffling and Random Numbers 29

This page intentionally left blank.

30 Algorithms in Java: Shuffling and Random Numbers

Appendix C: Lottery Class (Lottery.java)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

package edu.cnm.deepdive;

import java.util.Arrays;
import java.util.Random;

public class Lottery {

 private int[] numbers;

 public Lottery(int maximum) {
 numbers = new int[maximum];
 for (int i = 0; i < numbers.length; i++) {
 numbers[i] = i + 1;
 }
 }

 private void mix(int iterations, Random rng) {
 for (int i = 0; i < iterations; i++) {
 int destination = numbers.length - i - 1;
 int source = rng.nextInt(destination + 1);
 int temp = numbers[source];
 numbers[source] = numbers[destination];
 numbers[destination] = temp;
 }
 }

 public int[] pick(int count, Random rng) {
 int[] selection;
 mix(count, rng);
 selection = Arrays.copyOfRange(
 numbers, numbers.length - count, numbers.length);
 Arrays.sort(selection);
 return selection;
 }

}

Algorithms in Java: Shuffling and Random Numbers 31

This page intentionally left blank.

32 Algorithms in Java: Shuffling and Random Numbers

Appendix D: Roadrunner Lottery Program (Roadrunner.java)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

package edu.cnm.deepdive;

import java.util.Arrays;
import java.util.Random;
import java.security.SecureRandom;

public class Roadrunner {

 private static final int MAXIMUM_NUMBER = 37;
 private static final int NUMBER_TO_PICK = 5;
 private static final int NUMBER_OF_TICKETS = 10;
 private static final String PICK_FORMAT =
 "Ticket #%d: %s%n";

 public static void main(String[] args) {
 Lottery lotto = new Lottery(MAXIMUM_NUMBER);
 Random rng = new SecureRandom();
 for (int i = 0; i < NUMBER_OF_TICKETS; i++) {
 int[] pick = lotto.pick(NUMBER_TO_PICK, rng);
 String prettyPick = Arrays.toString(pick);
 System.out.printf(PICK_FORMAT, i + 1, prettyPick);
 }
 }

}

Algorithms in Java: Shuffling and Random Numbers 33

	Shuffling in Java, Part 1: Lotteries, Random Numbers, and Pseudo-random Numbers
	Copyright and License
	Source Code
	Preface
	Objective
	Audience
	Implementation Language

	Shuffling: The flip side of sorting
	Introduction
	Shuffling algorithms
	Exercise 1: Shuffling a list of 6 items by rolls of a die
	Exercise 2: Additional questions and tasks

	Lotteries
	Introduction
	Exercise 3: Writing a lottery class in Java
	Exercise 4: Testing the Lottery class interactively
	Exercise 5: Writing a Java program that uses the Lottery class
	Exercise 6: Additional questions and tasks

	Random and Pseudo-random Numbers
	The need for randomness
	The appearance of randomness
	Linear congruential generators
	Exercise 7: Another LCG
	The Mersenne Twister and other PRNGs
	When pseudo-random isn't good enough

	Acknowledgments
	References
	Appendix A: Fisher-Yates Shuffle
	Appendix B: Fisher-Yates Shuffle for Six Items and a Six-Sided Die
	Appendix C: Lottery Class (Lottery.java)
	Appendix D: Roadrunner Lottery Program (Roadrunner.java)

