Point class extra credit opportunity

This is a non-trivial coding task, worth up to 20 points (even more, if you complete some of the extended
specifications portion), that exercises a number of concepts and techniques that we've covered in our
previous coding exercises, as well as some that have been discussed in Java: A Beginner’s Guide and Effective
Java.

Participating

After reading the specifications, if you want to attempt the problem, please click here
(https://classroom.github.com/a/kEMNojs1). As you work on the problem, commit and push as usual. This

is already a Git repository, with a remote on GitHub; there is no need to re-share on GitHub.

Specifications

For the full 20 points of credit, you must complete the implementation of the
edu.cnm.deepdive.geometry.Point class. Instances of the class represent points in 2-dimensional space,
using Cartesian coordinates; that is, every point has an X and a Y coordinate—both set when the instance is
initialized, and accessible via getter methods. Additionally, the class will provide a number of methods that

return new Point instances, based on common operations.
General characteristics

e This new class must have no connection (implicit or explicit) to java.awt.geom.Point2D or

java.awt.Point.

e The class must not be extendable—that is, it must not be possible to create another class that extends
this Point class.

e [nstances of the class must be immutable. (See Effective Java for the implications of this on how the
class should be declared and implemented.)

e Any member fields, methods, method parameters, and constructor parameters must be named/cased
according to the conventions dictated by the Google Java Style Guide. (Don't forget: It's not just an

Intelli) plug-in; there’s also a web page you can consult, which details these conventions.)
Creating instances

The class must have no public constructors, but must instead implement the following public static



factory methods:
e public static Point fromPoint(Point point)
Creates and returns an instance as a copy of the specified point.
e public static Point fromXY(double x, double y)
Creates and returns an instance with the specified X and Y coordinate values.
e public static Point fromPolar(double r, double theta)

Creates and returns a new instance, with X and Y coordinates based on the following conversions

from r and © ( theta):

o x = rcos(f)
o y=rsin(0)

See Figure 1 for an illustration of the relationship between Cartesian and polar coordinates.

Hint: Static factory methods may invoke constructors; just because the class has no public constructors,

that doesn’t mean it can’t have private constructors.

Accessing the instance state

e The class must provide the following basic accessors (getters):
o public double getX()
Returns the X coordinate of the point.
o public double getY()
Returns the Y coordinate of the point.
e The class must provide the following convenience methods:
o public double[] getCoordinates()

Returns the X and Y coordinates as an array: the X value should be in element O of the array,

while the Y value should be in element 1.
o public double getR()

Computes and returns the distance of the instance from the origin, using the familiar

Pythagorean theorem computation:

r=Vr2+y?



(Hint: See the java.lang.Math class for a method that makes this easy.)
o public double getTheta()

Computes and returns the angle formed between the positive X-axis and the line segment drawn
from origin to this point instance (see Figure 1). That angle is measured in counter-clockwise
radians. Fundamentally, this is given by the formula:

6 = tan ' (y/z)

However, this would (for example) give the same angle for a point at (1, 1) as it does for a point
at (-1, -1). It also has problems for any point with an X value of 0. So you will need to address
this accordingly. (Hint: Review the java.lang.Math class to find a method that returns an
angle, based on separate X and Y values, rather than on the quotient of the two.)

Py ’

Figure 1: Cartesian and polar coordinates.

Overriding java.lang.0Object methods

Your implementation should override the following methods inherited from Object :

public boolean equals(Object other)

Must return true if other is actually an instance of Point, and if its coordinate values are equal to
the coordinates of this instance.

public int hashCode()

Computes and returns a hash code constructed from the field values of this instance. Since Point is
designed to be immutable, this must return the same value every time it is invoked on a given instance.
(Hint: Review the java.util.Objects class for methods that might help you compute a hash code.)

public String toString()

Computes and returns a string representation of this Point instance. This should take the form
Point({x}, {y}),with {x} and {y} replaced by the corresponding coordinate values. For example
if p isa Point instance with an X coordinate value of 1.0, and a Y coordinate value of 2.0,
p.toString() should return "Point(1.8, 2.0)".(Hint: Use the String.format method for



constructing a formatted String.)

Constants

The class must have the following public static final (constant) field, of the Point type, and initialized
accordingly:

e public static final Point ORIGIN

Represents the point at (X, Y) coordinates (0, O)—that is, the origin of the Cartesian coordinate system.
(Hint: You can call a method or create an instance with a constructor to assign a value to this field.)

Geometric computations

The class must implement the following methods, to perform the described operations:
e public Point add(Point other)

Creates and returns a new Point instance, with X and Y coordinates computed from the sums of the
respective coordinates of this instance and other . That is, the X coordinate of the new instance
should be equal to this.x + other.x, while the Y coordinate should be equal to this.y + other.y.
(Of course, this assumes that the fields storing the coordinates will be called x and y ; that detail is
left up to you.)

e public Point multiply(double scale)

Computes and returns a new Point instance, with X and Y coordinates computed from the product
of the respective coordinates of this instance and scale . That is, the X coordinate of the new
instance will be computed as scale * this.x, while the Y coordinate will be computed as scale *
this.y . (Again, this assumes that the fields storing the coordinates are called x and y.)

Extended specifications for additional points

For additional points (up to 20 beyond the base 20), implement some portion of the items below.

Additional geometric computations

e public Point subtract(Point other)
Equivalent to add(other.multiply(-1))
e public Point divide(double scale)

Equivalent to multiply(1 / scale)



e public double dot(Point other)

Computes and returns the dot product of this instance and other . The dot product is simply the sum

of the coordinate products—that is, this.x * other.x + this.y * other.y.

java.lang.Comparable implementation

Implement Comparable <Point> —which implies implementing public int compareTo(Point other) —to

support comparing this instance with another, based on each instance’s distance from the origin. That is, if
this is closer to the origin than other, then this.compareTo(other) must return a negative value; if
other is closer to the origin than this, this.compareTo(other) must return a positive value; if the

distance to the origin is the same for this and other, this.compareTo(other) must return zero.

java.util.Comparator implementations

e Definea public static class XYComparator, within Point, that implements Comparator <Point>.

This implementation should implement the public int compare(Point p1, Point p2) method to

compare first on the two instance’s X coordinate values, and then (if the X values are equal) on their Y

coordinate values.

e Definea public static class YXComparator , within Point, that implements Comparator <Point>.
This implementation should compare first on the two instance’s Y coordinate values, and then (if the Y

values are equal) on their X coordinate values.

e Definea public static class ManhattanComparator , within Point, that implements

Comparator <Point> . This implementation should compare the two instances based on their

Manhattan (rectilinear) distances from the origin. For example, a point at (-2, 2) has a Manhattan
distance from the origin (i.e. the sum of the absolute values of its coordinates) of 4; a point at (3, 0)
has a Manhattan distance from the origin of 3; your ManhattanComparator implementation should
return a positive value when comparing the first to the second (in that order), since the first has a

greater Manhattan distance.

Alternative/additional Comparator implementations

Instead of (or in addition to—see below) creating the 3 Comparator <Point> implementations above, create
3 public static final Comparator<Point> fields, with the following names:

e XY_COMPARATOR
e YX_COMPARATOR
e MANHATTAN_COMPARATOR

These may be instances of the java.util.Comparator implementations specified above, or they may be

written as lambdas or anonymous classes; if the latter, then you may leave out the actual class definitions

specified in " java.util.Comparator implementations".


https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html#compareTo(T)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html#compare(T,T)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html




	Point class extra credit opportunity
	Participating
	Specifications
	General characteristics
	Creating instances
	Accessing the instance state
	Overriding java.lang.Object methods
	Constants
	Geometric computations

	Extended specifications for additional points
	Additional geometric computations
	java.lang.Comparable implementation
	java.util.Comparator implementations
	Alternative/additional Comparator implementations



