Contents

Matrix Rotation

Value e
Base problem
Extracredit
Background
Base problem
Examples
Implementation details
Base unit tests L Lo o
Case l: 1 X 1matrix

Case 2: 2 X 2aITay . . . o v v v v i e e

Case 3: 3X3matrix

In-place implementation details
Unit testingo o
Base unit tests on in-place implementation
Parameterized unit tests on basic implementation
Parameterized unit tests on in-place implementation . . .

S OO UL UL UL W W W NNDN — = ==

Matrix Rotation

Value
Base problem

o Base implementation: 5 points
¢ Base unit tests: 5 points

Extra credit

¢ In-place implementation: 4 points

o Base unit tests on in-place implementation: 3 points

o Parameterized unit tests on base implementation: 3 points if in addition
to base unit tests, 6 points if instead of base unit tests

e Parameterized unit tests on in-place implementation: 3 points if in addi-
tion to base unit tests on in-place implementation, 5 points if instead of
base unit tests

Background

In many graphics processing and data analysis tasks, we need to rotate a matrix
of data. This might be as visually intuitive as rotating an image 90° clockwise,
or it might be more abstract, less directly connected to a visual result; the
fundamental task is essentially the same, regardless.

Base problem

Your assignment is to write code to rotate a square matrix of integers (in Java
terms, an array of arrays of integers, or int [] [], where the number of elements
in each row is the same as the number of rows) 90° clockwise.

Examples

For example, assume we start with the matrix

(5 3)

Your code would produce the result
4 1
3 2

Implementation details

We strongly recommend you read (carefully) all of the following, including the
“Unit testing” section, before writing any code.

e Write a method with the following declaration:
public static int[][] rotate(int[][] data)

That is, your rotate method will take a parameter that is a 2-dimensional
array of int, and return a new 2-dimensional array of int, with exactly
the same dimensions. (In this case, we have the additional knowledge that
the arrays will be square.)

The body of this method must perform the processing described above,
to construct and return a matrix that is rotated 90° clockwise from the
original.

e Your method should be in a public class named Matrices, in the
edu.cnm.deepdive package.

» Your code should be an an IntelliJ Java project (not Android), using either
JDK 8 (1.8) or JDK 11.

¢ Your code might include one or more additional methods as helper meth-
ods. These should probably be written as private static methods in
the Matrices class.

Base unit tests
Create a test class using JUnit5, with one or more test methods annotated with
@Test, to test your implementation with the following test cases. (See “Incor-

porating JUnit5 into Your IntelliJ IDEA Project” for details on incorporating
JUnit5 into your project.)

Case 1: 1 X 1 matrix

Input

(1)

In Java terms, this is a two-dimensional array (an array of arrays), with 1 row
and 1 column, i.e. :

int[][] data = {
{-1}
};

Expected output

(1)

(Rotating a 1 X 1 matrix must give us an array that is identical to the input.)
Case 2: 2 X 2 array
Input
(i3
4 3

In Java terms, this is a two-dimensional array (an array of arrays), with 2 rows
and 2 columns, i.e.

https://deep-dive-coding-java.github.io/2019/02/14/incorporating-junit5.html
https://deep-dive-coding-java.github.io/2019/02/14/incorporating-junit5.html

int[]1[] data = {
{1, 2%},
{4, 3%}
};°

Expected output

G)

Case 3: 3 X 3 matrix

Input
2 4 6
8 10 12
14 16 18
Expected output
14 8 2
16 10 4
18 12 6

(In a square matrix with an odd number of rows, the central element has the
same value after rotation.)

Hints

e Remember: In this type of problem, where you are asked to write a
static method that performs an operation using some input data, the
parameters of the method are the only inputs the method should use.
There is no need to use a Scanner to get data from the user.
Another way of thinking about is that your method will be a sort of
“black box”: the only connection it has to the world is what it gets in
its parameters, and what it returns. (Of course, your code can use the
Java standard library to perform some portion of the processing; it simply
doesn’t need—and shouldn’t look for—additional data from any source
other than its parameters.)

e The body of your method should probably start by declaring and allocat-
ing space for an output array, of the same size as the input array.

e The body of your method should end with a return statement that returns
the output array.

e Think about iterating over a 2-dimensional array using nested loops:

for (int i = 0; i < data.length; i++) {
for (int j = 0; j < data.length; j++) {
// TODO Most of the work happens here.
}
}

In the above snippet, at the line where the // TODO comment is located,
i is the current row of the input data, and j is the current column of row
i.

Now, consider this question: If the value of the current element is
datalil [j], what are the row & column indices (in terms of i, j, and
data.length) where that value should be placed in the output array?
Once you answer that question, how do you put that value in the desired
row & column of the output array?

Extra credit

In the basic task, you probably performed rotation by allocating an output
array, and copying the elements from the input array to the rotated positions
in the output array. For extra credit, you must write a method that modifies
the contents of the input array in-place.

In-place implementation details

o Write a method with the following declaration:
public void rotateInPlace(int[][] data)

This method must perform the same task as the original (at least con-
ceptually), but instead of returning a new, rotated matrix (note that this
method has the void return type; that is, it does not return a value), it
must rotate the input matrix in-place.

¢ Your implementation must not simply invoke the rotate method you
wrote for the basic task and copy the results over the contents of the
input data. Instead, it should do the rotation processing directly on the
data array, without allocating (directly or indirectly) a new array.

Unit testing

There are 3 extra credit opportunities involve unit testing.

Base unit tests on in-place implementation

e Use test methods annotated with @Test to test the in-place implementa-
tion, with the same test cases given in “Base unit tests” (above).

Parameterized unit tests on basic implementation

o Use the @ParameterizedTest annotation to write a single test method
that will be invoked multiple times—once for each test case. (See “Pa-
rameterized Tests” in the JUnit5 User Guide for details on parameterized
tests.)

o Write the test cases in a CSV file (using the @CsvFileSource annotation
on your test method), or as a Stream<Arguments> returned by a provider
method (using the @MethodSource annotation on your test method).

Parameterized unit tests on in-place implementation

e Use the @ParameterizedTest annotation to write a single test method
that will be invoked multiple times—once for each test case.

o Write the test cases in a CSV file (using the @CsvFileSource annotation
on your test method), or as a Stream<Arguments> returned by a provider
method (using the @MethodSource annotation on your test method).

https://junit.org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests
https://junit.org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests
https://junit.org/junit5/docs/current/user-guide/

	Matrix Rotation
	Value
	Base problem
	Extra credit

	Background
	Base problem
	Examples
	Implementation details
	Base unit tests
	Case 1: 1 X 1 matrix
	Case 2: 2 X 2 array
	Case 3: 3 X 3 matrix

	Hints

	Extra credit
	In-place implementation details
	Unit testing
	Base unit tests on in-place implementation
	Parameterized unit tests on basic implementation
	Parameterized unit tests on in-place implementation

