Introduction to arrays

Regardless of the programming language, we often distinguish between scalar data types, which can only
hold one piece of data, and structured types, which can contain multiple data elements. Records or objects
(again, in non-language-specific terms) are structured types containing multiple data elements, each one
potentially of a distinct type, and with each element referenced by its name. But a more fundamental
structured type is a sequence, containing multiple data elements of the same type, referenced by position or
index. In Java (as in many other languages), the most basic—and most important—kind of sequence is an

array.

Concepts

We can picture an array as a row of post office boxes, numbered consecutively and starting at 0. We can
open any individual box and see what it contains; we can also open any individual box and put something
inside it. In programming, we usually refer to these boxes as elements, and the box numbers as indices or

positions.

Each box is the same size and shape; therefore, each box can contain the same type of content. Continuing
the post office box analogy, imagine a row of very small, letter-sized boxes: We could put a letter in each

one, but not a package.

The most basic arrays are defined to contain a simple, scalar value in each box. For example, here is a visual
representation of an array (of length 5) of integers (numbers without a decimal portion).

index 0 1 2 3 4

vaue 2 7 1 8 2

Some important points to note:

e The length of the array (the number of elements) is 5; however, since we start counting at O, the index

position of the last element in the array is 4.

e In this case, and most others, the value in each element (box) is not necessarily the same as the index

or position of the element (i.e. the box number).

Declaring arrays in Java

We can define an array like the one above in Java code quite simply—especially since we know ahead of

time the values in all of the elements:



int[] digitsOfE = {2, 7, 1, 8, 2};

e We've called the array digitsOfE here; as a rule, variables should be given meaningful names, helping
anyone that reads your code later (including yourself) understand what those variables are used for.

e Thearray is declared with the type int[] . The square brackets after int indicate that this is an
array, and each element of the array can hold a value of type int.

e Because low-level Java syntax is based on C, we could express this same declaration in terms that
while not commonly used in Java, are quite common in C code, and are supported in Java. For
example, instead of int[] digitsOfE, we could write int digitsOfE[], and it would have the same
meaning.

The above statement is a declaration-with-assignment: the variable digitsOfE is declared (on the left side of
the = sign) and assigned a value (taken from the right side of =) in the same statement. In this form, where
the element values are enclosed in braces, the expression in braces is called an array initializer. The Java
compiler is able to infer a lot of things when we use this form, but it's not always possible to use it. Another
form with the same result is:

int[] digitsOfE;
digitsOfE = new int[]{2, 7, 1, 8, 2};

The Java compiler is still inferring the size of the array, based on the number of values in the array initializer
(the curly braces and values they enclose); but in this case, we have to tell the compiler to allocate memory
for the array, using new int[].

Accessing elements in an array

The above code fragments show examples of declaring and assigning all values of an array at once. But
what do we do if we want to access (either to read or write) a single element? For that, we must use square
brackets enclosing index positions. In fact, we might assign all the values of the array in this fashion:

int[] digitsOfE = new int[5];

digitsOfE[@] = 2;
digitsOfE[1] = 7;
digitsOfE[2] = 1;
digitsOfE[3] = 8;
digitsOfE[4] = 2;

// The contents of digitsOfE are now {2, 7, 1, 8, 2}.

Again, we start with a declaration-with-assignment statement: The declaration is on the left side of the =,
and the value being assigned is on the right. But rather than assigning individual element values, we're

simply allocating space for the array.

Here, we're using the square brackets for two different (though both array-related) purposes:



e To specify the size of the array—that is, the number of elements—we enclose that size in square
brackets after the element type and the new keyword. This allocates space for the array, and—

because the element type is int (a numeric primitive type)—sets all the element values to O.

e In this fragment, each element is referenced by its index, one at a time, and a new value is assigned to
that element. After all of those assignments are complete, the contents of the array are exactly as
they were in the code fragments in the previous section.

Alternatively, we might use one of the approaches shown earlier to assign all the values at once, and then
modify a single element value using a bracketed reference:

int[] digitsOfE = {2, 7, 1, 8, 3};
digitsOfE[4] = 2;
// The contents of digitsOfE are now {2, 7, 1, 8, 2}.

We can also use brackets to read individual element values. For example the following fragment creates and
initializes the values as before, and then prints the value of element 3, which is 8.

int[] digitsOfE = {2, 7, 1, 8, 2};
System.out.println(digitsOfE[3]);

In many cases, we want to iterate over an array—i.e. perform some operation on every element in the array
in turn. Thus, we often see arrays paired with the for statement. The following fragment uses a for loop
to print the value of each element in an array.

int[] digitsOfE = {2, 7, 1, 8, 2}:
for (int 1 = @; i < digitsOfE.length; i++) {
System.out.println(digitsOfE[i]);

Note that the loop control variable i is only being used to count up from O to the last index in the array,
and to read the element value at each position. A simpler way to accomplish the same thing is the enhanced-
for loop, which doesn’t use an explicit loop control variable as an index:

int[] digitsOfE = {2, 7, 1, 8, 2};
for (int digit : digitsOfE) {
System.out.println(digit);

Default element values

In one of the examples above, it was mentioned that immediately after allocation of the array, all of its

element values were set to O. In fact, we can generalize that statement as follows:

e An array declared with elements of any primitive numeric type will have the value @ assigned to all of



its elements upon allocation, unless an array initializer is used.

e An array declared with elements of the boolean primitive type will have the value false assigned to

all of its elements upon allocation, unless an array initializer is used.

e An array declared with elements of any object type will have the value null (i.e. a reference to
nothing, or a non-existent object) assigned to all of its elements upon allocation, unless an array
initializer is used.

double[] prices = new double[4]; // Contains {0.0, 0.0, 0.0, 0.0}.

long[] distances = new long[3]; // Contains {0, 0, 0}.
[5]; // Contains {false, false, false, false, false}.
]: // Contains {null, null}.

boolean[] flags = new boolean
String[] names = new String[2

Points to remember

e The declaration of an array never includes a size. The size is specified in the allocation expression (the
part starting with new), or is inferred from an array initializer used in declaration-with-assignment.

e An array allocation performed with new always includes a size.
e Java arrays are fixed-length: once space is allocated for an array, it can't be expanded or contracted.

e While a Java array can be declared to contain other primitive types besides int, as well as object
types, arrays are homogeneous: all elements of any given array must be of the same type. (This is not as
restrictive as it might seem, particularly when the elements are objects.)

e 2- (and higher) dimensional arrays are possible in Java. However, their use can be a little confusing at
the start, since they are actually arrays of arrays (or arrays of arrays of arrays, for a 3-dimensional array,
and so on). More descriptively, a 2-dimensional array in Java is an array of objects, where each
element is itself a reference to an array.

e Every array is actually a special kind of object in Java; however, the methods that can be invoked
directly on an array are limited. Instead, we usually resort to methods in the Arrays or System class
to perform specialized operations on arrays.

e Though it's not a syntactical requirement, we recommend giving arrays plural names as a general
practice.



	Introduction to arrays
	Concepts
	Declaring arrays in Java
	Accessing elements in an array
	Default element values
	Points to remember


