
Incorporating JUnit5 into Your IntelliJ IDEA Project

Add the core JUnit5 library to IntelliJ IDEA as a global library

1. From the main IntelliJ IDEA workspace, select the File/Project Structure menu option. (From the
Welcome to IntelliJ IDEA screen, select Configure/Project Defaults/Project Structure.)

2. In the left sidebar of the Project Structure window, select Global Libraries (in the Platform Settings
section).

3. If you already have some 5.x version of org.junit.jupiter:junit-jupiter-api listed, then you
already have the core JUnit5 library installed as a global library; proceed directly to “Add JUnit5 to an
IntelliJ IDEA project”.

4. Click the plus (+) sign above the list of libraries, and select From Maven from the menu that appears;
the Download Library from Maven Repository dialog will appear.

5. In the input field, type org.junit.jupiter:junit-jupiter-api , and click the search (magnifying
glass) icon. After a few seconds, you should see the list of all available versions of the junit-jupier-
api artifact in the org.junit.jupiter group.

file:///tmp/add-junit5-to-an-intellij-idea-project

6. From the list that appears, select the highest-numbered version that is not a release candidate (RC) or
milestone (M) build. (In the screen capture above, this would be 5.4.0.)

7. Make sure that the Transitive dependencies option is checked, and click the OK button. All of the
component files will be downloaded, and the selected library will appear in the list of global libraries.

8. If you are going to use parameterized tests, repeat steps 4–7, using junit-jupiter-params , in place
of junit-jupiter-api .

9. Important: Click the Apply or OK button to finish adding the library to IntelliJ as a global library.

Add JUnit5 to an IntelliJ IDEA project

1. With your project open in IntelliJ IDEA, select the File/Project Structure menu option.

2. In the left sidebar, select Modules in the Project Settings section, select the module containing the
code you want to test in the next panel, and click the Sources tab in the right panel.

3. If there is already a directory marked as a test source folder, it will appear in green in the folder tree,
and will be listed under Test Source Folders. If that is the case, proceed directly to step 7.

4. Add a new folder to the project by right-clicking on the root of the folder tree, and selecting New
Folder from the context menu.

5. In the New Folder dialog that appears, specify an appropriate name (e.g. “test”, “tests”).

6. Select the new folder in the folder tree, and click the Tests button above the folder tree; this

designates that folder as a test source folder. It should now be displayed in green in the folder tree,
and be listed under Test Source Folders in the content root list on the right.

7. Click the Dependencies tab in the right panel. A list including the JDK and any external libraries used
by the module will be displayed.

8. Click the plus (+) sign in the right margin (it may appear in the bottom margin in OS X and some Linux
versions of IntelliJ IDEA), and select Library from the pop-up menu.

9. In the Choose Libraries dialog that appears, select the JUnit5 API library (e.g.
org.junit.jupiter:junit-jupiter-api:5.4.0) from the list.

10. Click the Add Selected button. The library now appears as a module dependency.

11. Important: If Compile appears in the Scope column of the dependencies list for the JUnit5 library,
click on the pull-down control next to Compile, and select Test from the menu.

12. If your unit tests will include parameterized tests, repeat steps 8–11, but this time selecting the
JUnit5 Params library (e.g. org.junit.jupiter:junit-jupiter-params:5.4.0).

13. Important: Click the OK or Apply button to finish configuring JUnit5 for use in your project.

Creating a test class

1. In the source file for the class for which you want to create one or more JUnit5 tests, click on the
class name in the class declaration, and press [Alt]-[Enter].

2. From the menu that appears, select Create Test.

3. In the Create Test dialog, select JUnit5 from the Testing library pull-down. (If you see a message
indicating that JUnit5 is not a module dependency, along with a Fix button, please review the steps in
“Add the core JUnit5 library to IntelliJ IDEA as a global library” and “Add JUnit5 to an IntelliJ IDEA
project”, above.)

4. If you want to create test methods corresponding to specific methods in the class you’re testing,
select the checkboxes for any such methods in Generate test methods for list.

5. Click the OK button to create the test class.

6. Note that in the test class, test methods (whether created manually, or generated automatically in
steps 3-5, above) must be annotated with @Test (or one of the other JUnit5 annotation for special-
purpose test methods). Methods annotated with @Test must have the void return type, and must
have no parameters declared. However, while it is common to name test methods with names
matching the methods in the class being tested, this is not required.

7. Use the appropriate static methods of the org.junit.jupiter.api.Assertions class to write your
tests.

